-
GDB break b 设定断点
所属栏目:[语言] 日期:2022-07-13 热度:147
默认情况下,程序不会进入调试模式,代码会瞬间从开头执行到末尾。要想观察程序运行的内部细节(例如某变量值的变化情况),可以借助 GDB 调试器在程序中的某个地方设置断点,这样当程序执行到这个地方时就会停下来。 所谓断点(BreakPoint),读者可以理解[详细]
-
GDB watch命令 监控变量值的更变
所属栏目:[语言] 日期:2022-07-13 热度:113
《GDB break命令》一节,给大家介绍了使用 break 命令在程序某一行的位置打断点。但还有一些场景,我们需要监控某个变量或者表达式的值,通过值的变化情况判断程序的执行过程是否存在异常或者 Bug。这种情况下,break 命令显然不再适用,推荐大家使用 watch[详细]
-
GCC -o选项 特定输出文件
所属栏目:[语言] 日期:2022-07-13 热度:71
gcc -o选项用来指定输出文件,如果不使用 -o 选项,那么将采用默认的输出文件。例如默认情况下,生成的可执行文件的名字默认为 a.out。 如下是 gcc -o 指令的使用语法格式: [root@bogon demo]# gcc [-E|-S|-c] [infile] [-o outfile] 其中,用方括号 [] 括[详细]
-
GCC -l选项 手动增加链接库
所属栏目:[语言] 日期:2022-07-13 热度:171
链接器把多个二进制的目标文件(object file)链接成一个单独的可执行文件。在链接过程中,它必须把符号(变量名、函数名等一些列标识符)用对应的数据的内存地址(变量地址、函数地址等)替代,以完成程序中多个模块的外部引用。 而且,链接器也必须将程序[详细]
-
gcc指令一次处置多个文件
所属栏目:[语言] 日期:2022-07-13 热度:114
通过前面几节的学习,读者已经了解了如何使用 gcc(g++)指令调用 GCC 编译器编译(包括预处理、编译、汇编和链接)C 或者 C++ 源代码,例如: [root@bogon demo]# ls demo1.c demo2.c [root@bogon demo]# cat demo1.c #includestdio.h int main(){ printf(G[详细]
-
GCC运用静态链接库和动态链接库
所属栏目:[语言] 日期:2022-07-13 热度:50
我们知道,C、C++程序从源文件到生成可执行文件需经历 4 个阶段,分别为预处理、编译、汇编和链接,本节将重点围绕链接阶段,对静态链接库和动态链接库做详细的讲解。 有关链接操作的具体细节,感兴趣的读者可阅读《到底什么是链接,它起到了什么作用?》和[详细]
-
GCC -c选择 生成目标文件
所属栏目:[语言] 日期:2022-07-13 热度:142
我们知道,从 C、C++源代码生成可执行文件要经历 4 个过程,分别为预处理、编译、汇编和链接。 《GCC -E选项:对源程序做预处理操作》一节以 demo.c 源文件为例,介绍了如何对源文件进行预处理,并生成相应的 demo.i 预处理文件;《GCC -S选项:编译非汇编文[详细]
-
Makefile文件是哪些
所属栏目:[语言] 日期:2022-07-12 热度:184
我们教程主要是讲的是 Makefile 。很多 Linux(Unix) 做开发的初学者不了解 Makefile 是什么,甚至大部分 Windows 开发工程师对 Makefile 都特别陌生。这个其实很正常,如果你是在 Windows 下作开发的话不需要去考虑这个问题,因为 Windows 下的集成开发环境[详细]
-
GDB catch命令 创立捕捉断点
所属栏目:[语言] 日期:2022-07-12 热度:120
要知道,GDB 调试器支持在被调试程序中打 3 种断点,分别为普通断点、观察断点和捕捉断点,其中普通断点用 break 命令建立(可阅读《GDB break》一节),观察断点用 watch 命令建立(可阅读《GDB watch》一节),本节将讲解如何使用 catch 命令建立捕捉断点[详细]
-
GDB条件断点 condition命令 解说
所属栏目:[语言] 日期:2022-07-12 热度:97
前面章节给大家介绍了 GDB 调试器中普通断点、观察断点以及捕捉断点的功能和用法。其中值得一提的是,对于普通断点的建立,可以使用如下格式的 break 命令: (gdb) break ... if cond ... 参数用于指定生成断点的具体位置;cond 参数用于代指某个表达式。通[详细]
-
GDB单步调节程序
所属栏目:[语言] 日期:2022-07-12 热度:142
《调用GDB调试器的几种方式》一节中提到,借助 next 命令可以控制 GDB 单步执行程序。所谓单步调试,就是通过一行一行的执行程序,观察整个程序的执行流程,进而尝试发现一些存在的异常或者 Bug。 根据实际场景的需要,GDB 调试器共提供了 3 种可实现单步调[详细]
-
GDB print和display命令 查视变量的值
所属栏目:[语言] 日期:2022-07-12 热度:160
前面章节中提到,使用 GDB 调试程序,最常用的方法是:单步调试或者断点调试程序,期间通过查看某个变量或者表达式的值,判断当前程序的执行过程是否正确,不断缩小异常或 Bug 位于代码中的范围,最终找到并修复。 对于在调试期间查看某个变量或表达式的值,[详细]
-
GDB禁用与删除断点
所属栏目:[语言] 日期:2022-07-12 热度:84
我们知道,GDB 调试器支持 3 种断点,分别为普通断点(用 break 命令创建)、观察断点(用 watch 命令建立)以及捕捉断点(用 catch 命令建立)。并且如果需要的话,我们可以在被调试程序中打多个断点,甚至于 GDB 允许在同一位置打多个断点。 这就产生一个[详细]
-
GDB handle命令 信号处置
所属栏目:[语言] 日期:2022-07-12 热度:60
C、C++ 程序中,信号常常作为进程间通信的一种重要手段。举个例子: #include stdio.h #include unistd.h #include signal.h void display(){ printf(http://c.biancheng.net/gdb/); } int main () { pid_t cpid; pid_t ppid; signal(SIGINT,display); if((c[详细]
-
GDB frame和backtrace命令 检查栈信息
所属栏目:[语言] 日期:2022-07-12 热度:177
当程序因某种异常停止运行时,我们要做的就是找到程序停止的具体位置,分析导致程序停止的原因。 对于 C、C++ 程序而言,异常往往出现在某个函数体内,例如 main() 主函数、调用的系统库函数或者自定义的函数等。要知道,程序中每个被调用的函数在执行时,都[详细]
-
GDB编辑及搜索源码
所属栏目:[语言] 日期:2022-07-12 热度:87
本节主要讲解的是在 GDB 内对源文件中的代码进行修改和查找,分别对应 GDB 中的 edit 命令和 search 命令,下面是对这两个命令的详细介绍。 GDB edit命令:编辑文件 在 GDB 中编辑源文件中使用 edit 命令,该命令的语法格式如下: (gdb) edit [location] (gd[详细]
-
GDB help命令 查看目标命令的详细用法
所属栏目:[语言] 日期:2022-07-12 热度:85
截止到本节,我们接触了大量的 GDB 命令,甚至很多命令还拥有不同的语法格式和参数。这就产生一个问题,如何才能记住它们呢? 实际上,GDB 调试器的开发人员也想到了这个问题。为了降低用户使用 GDB 调试器的学习成本,GDB 提供了 help 命令,它可以帮用户打[详细]
-
bind 和connect 函数 绑定套接字并创立连接
所属栏目:[语言] 日期:2022-07-11 热度:123
socket() 函数用来创建套接字,确定套接字的各种属性,然后服务器端要用 bind() 函数将套接字与特定的 IP 地址和端口绑定起来,只有这样,流经该 IP 地址和端口的数据才能交给套接字处理。类似地,客户端也要用 connect() 函数建立连接。 下面的代码,将创建[详细]
-
listen和accept函数 使套接字进入监听状态并响应客户端请求
所属栏目:[语言] 日期:2022-07-11 热度:148
对于服务器端程序,使用 bind() 绑定套接字后,还需要使用 listen() 函数让套接字进入被动监听状态,再调用 accept() 函数,就可以随时响应客户端的请求了。 listen() 函数 通过 listen() 函数可以让套接字进入被动监听状态,它的原型为: int listen(int so[详细]
-
send recv 和write read 发送数据与接收数据
所属栏目:[语言] 日期:2022-07-11 热度:171
在 Linux 和 Windows 平台下,使用不同的函数发送和接收 socket 数据,下面我们分别讲解。 Linux下数据的接收和发送 Linux 不区分套接字文件和普通文件,使用 write() 可以向套接字中写入数据,使用 read() 可以从套接字中读取数据。 前面我们说过,两台计算[详细]
-
socket缓冲区以及阻塞模式说明
所属栏目:[语言] 日期:2022-07-11 热度:140
在《socket数据的接收和发送》一节中讲到,可以使用 write()/send() 函数发送数据,使用 read()/recv() 函数接收数据,本节就来看看数据是如何传递的。 socket缓冲区 每个 socket 被创建后,都会分配两个缓冲区,输入缓冲区和输出缓冲区。 write()/send() 并[详细]
-
TCP协议的粘包难题 数据的无边界性
所属栏目:[语言] 日期:2022-07-11 热度:153
上节我们讲到了socket缓冲区和数据的传递过程,可以看到数据的接收和发送是无关的,read()/recv() 函数不管数据发送了多少次,都会尽可能多的接收数据。也就是说,read()/recv() 和 write()/send() 的执行次数可能不同。 例如,write()/send() 重复执行三次[详细]
-
图解TCP数据报结构以及三次握手 很详细
所属栏目:[语言] 日期:2022-07-11 热度:169
TCP(Transmission Control Protocol,传输控制协议)是一种面向连接的、可靠的、基于字节流的通信协议,数据在传输前要建立连接,传输完毕后还要断开连接。 客户端在收发数据前要使用 connect() 函数和服务器建立连接。建立连接的目的是保证IP地址、端口、[详细]
-
详细分析TCP数据的传输步骤
所属栏目:[语言] 日期:2022-07-11 热度:123
此时 Ack 号为 1301 而不是 1201,原因在于 Ack 号的增量为传输的数据字节数。假设每次 Ack 号不加传输的字节数,这样虽然可以确认数据包的传输,但无法明确100字节全部正确传递还是丢失了一部分,比如只传递了80字节。因此按如下的公式确认 Ack 号: Ack号[详细]
-
解析TCP四次握手断开连接
所属栏目:[语言] 日期:2022-07-11 热度:191
建立连接非常重要,它是数据正确传输的前提;断开连接同样重要,它让计算机释放不再使用的资源。如果连接不能正常断开,不仅会造成数据传输错误,还会导致套接字不能关闭,持续占用资源,如果并发量高,服务器压力堪忧。 建立连接后,客户端和服务器都处于ES[详细]